
Info Session: XSLT

Christine McEvilly, AJHS

Kevin Schlottmann, CJH

August 21, 2013

Outline

 I. XML

 II. XSLT

 III. Examples

 IV. Resources

2

3

I. XML - What is it?

XML (eXtensible Markup Language):

a set of rules for structuring data via markup

4

Tag:

 <unitdate era=“ce”>2013</unitdate>

Attribute:

 <unitdate era=“ce”>2013</unitdate>

Element:

 <unitdate era=“ce”>2013</unitdate>

I. XML - What is it?

Elements and attributes defined by a
Document Type Definition (DTD) or a
Schema

<bioghist> <bionote>

5

I. XML - What is it?

<ead>

 <eadheader>

 <titleproper>Guide to the
Papers of Joseph Roth

 </titleproper>

 </eadheader>

</ead>

6

I. XML - What is it?

XML = containers for data

7

I. XML - What is it?

8

I. XML - MARCXML

9

I. XML - EAD

10

I. XML - VIAF cluster

11

I. XML - Namespaces

12

I. XML - Many more….

What is XPath
 • XPath is just a way to locate particular parts of an
XML document

• It can identify tags, attributes, whole elements, or
the content of elements (any “node” in the
document)

• A simple (abbreviated) Xpath expression works just
like a file path name in Windows.

– If you are looking for an element that is nested directly
within other elements just list the elements with slashes

• /element1/element2/element3

• /ead/archdesc/did/unittitle

I. XML - XPATH

What is XPath
 • You can easily point to an attribute instead

– /element1/element2/element3/@attribute

– /ead/archdesc/did/unittitle/@audience

• You can also point to an element, attribute or
content node using an additional test—called a
predicate

– /ead/archdesc/did/unittitle [@audience=“external”]

• This picks the unittitle elements that have an audience
attribute that equals external

I. XML - XPATH

What is XPath
 • Sometimes you want to locate nodes (elements,
attributes, or text) not using a direct path but using the
“tree” structure of XML
– Because:

• You don’t know it
• It changes from document to document, but you want one XSLT sheet

to work for all of them
• You don’t care were the element is, but want to locate all the times it

appears
• You want to locate a number of nodes based on another node—for

example you want all the elements that have a child element called
<unitdate>, which could include <did> and <unittitle> elements

– Then you often need to write out the Axis—This describes the
relationship between the spot you are selecting and the node
you are writting
• Axis:NodeTest [Predicate]
• /ead/descendant::node()/unitdate/parent::node()

I. XML - XPATH

What is XSLT?

16

II. XSLT

• eXtensible Stylesheet Language Transformations

• An XSLT document is just a series of rules for
creating documents, written in a way computers
can read

• It essentially says to a computer “find location A
in original XML documents, and depending on
what you find there, put something in the final
documents”

• The original document file is NEVER affected by
XSLT. The changes always appear in a new file.

What is XSLT?

17

II. XSLT

• An XSLT Stylesheet essentially says to a computer
“find location A in original XML documents, and
depending on what you find there, put something in
the final documents”
– You use XPath to indicate the “location”

– The “location” can be a single spot [The third time an
element appears in the original] or multiple, more
generic spots[every time title appears as an tag name]

– The “location” is not identical for all documents of one
type. For example since every repository has its own way
of doing EAD, one XSLT sheet can’t work on all EAD
documents. You can’t write XSLT without knowing details
about the original documents.

Processing documents

XML
Document

[EAD, MaRCXML,
Dublin Core XML,
Material from an

OAI feed, DigiTool
Exported Data]

XSLT
Stylesheet

[an XML
document written

in the XSLT
language using

XPath]

XSLT Processor

[Saxon, Xalan or
other program,

which can be built
into oXygen]

HTML
Document
[Webpage or
online finding

aid]

Text
Document

[Comma
Separated Value
(can be open in

Excel]

XML
Document

[New EAD
document,
MaRCXML]

The
“Original
Document”
Not
Changed

The “Final
or Output
Document”
New File

II. XSLT

The Structure of XSLT Language

The “Push” method
• This relies on essentially telling

the computer to copy the
original document, while
making changes

• This gives more power in the
final output to the person
writing EAD or other input
document

The “Pull” method
• This relies on selecting specific

elements and tags from the
original document and placing
them in specific spots in the
output (with changes as
needed)

• This puts more control in the
hands of the XSLT writer and is
best for when the original
documents are different from
each other but the output
needs to be the same

You can think about how XSLT works in two basic ways:

These are also programing strategies, but remember that each coder has their
own way of writing and most people combine the two

II. XSLT

The Structure of XSLT Language

The “Push” method The “Pull” method

You can think about how XSLT works in two basic ways:

These are also programing strategies, but remember that each coder has their
own way of writing and most people combine the two

You can get the same results either way. Think about a word processing
document you need to edit, without changing the original.
• You can copy the whole thing and then make large changes. (Push)
• Or you can copy and paste individual paragraphs into a new document each

in its final spot, then make smaller changes. (Pull)
Which makes more sense depends on whether you need to preserve the
structure of the original or if you need to change the order of the paragraphs
drastically.

II. XSLT

Basic XSLT Code
[just a little bit, I promise]

• Since XSLT is a type of XML, it uses tags, namespaces, and
attributes just like EAD does.
– A “namespace” (in this case, as a simplification using the most

common situation) just lets the computer know if the tag you
are typing is an XSLT element that gives it instructions, or if it an
tag for the final document (an EAD or HTML tag you want to
“print”)

– Namespaces go right before the element, usually as an
abbreviation
• <xsl:tag></xsl:tag> Or <dc:title></dc:title>

• It also uses XPath expressions(see above) and functions
– Functions are just instructions that make changes in the output

document, usually to the text content of an element [i.e.—
Capitalize all the letters of all titles]

– They usually are put inside attributes
• <tag attribute=“function-name(argument, argument)”></tag>

II. XSLT

Basic XSLT Code—The Elements
[just a little bit, I promise]

• <xsl:stylesheet> the tag that surrounds all the others in
a document (like the <ead> or <html> tags)

• <xsl:template> Defines rules for the output—applies
rules on the element selected and all its children

• <xsl:value-of> Puts the content of an element in the
output

• <xsl:element> Creates an XML element in the output
document

• <xsl:apply-templates> Tells the computer to find the
most appropriate template in the stylesheet and apply
it in the middle of another command

• The Built-in or default template runs on everything in
the original document and puts all the element content
in the final document

II. XSLT

XSLT Starter Example

Original Document XSLT Stylesheet

Output Document

<book>
 <title>Hello Word Book</title>
 <date>1997</date>
</book>

<xsl:stylesheet>
 <xsl:template match=“book”>
 The title of my book is <value-of select=“title”>.
 </xsl:template>
</xsl:stylesheet>

The title of my book is Hello Word Book.

III. Examples

How do we use XSLT?
[The basics]

III. Examples

24

• The most common and established way we use XSLT is to
produce HTML from an EAD document so that it can be
shown by a web browser to on-line users

• At the Center, DigiTool stores all our EAD files and one
XSLT sheet for each partner
– Every time a user requests a finding aid, DigiTool automatically

runs the EAD through the stylesheet and displays the final
output document, an HTML page.

• All archivists who encode EAD use the correct copy of the
Center’s 5 partner stylesheets (hosted at URLs) to test
their EAD before posting it, usually through oXygen
– oXygen “Transformation Scenarios” control how this happens

and how the archivist gets to see the HTML final document.
Then the HTML is discarded or saved on some other system

III. Examples

25

BUT….

 XSLT can do a whole lot more for any XML
document, and today, libraries and the web run

on XML

<dsc> to .csv
III. Examples

26

<dsc> to .csv
III. Examples

27

xPath in EAD
III. Examples

28

Digitool Metadata
III. Examples

29

Digitool Metadata
III. Examples

30

Resources

31

IV. Resources

Tinker!

• Learn more about XML and XSLT

• Download the free trial of oXygen XML editor,
the EAD schema, a finding aid, and a stylesheet.

• Try some basic actions: add a folder, change a
controlled vocabulary term, remove a series.

IV. Resources

http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/xsl/default.asp
http://oxygenxml.com/register.html
http://oxygenxml.com/register.html
http://www.loc.gov/ead/eadschema.html
http://findingaids.loc.gov/source/main
http://saa-ead-roundtable.github.com/ead-stylesheets/

